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Abstract
We propose a two-parameter binomial truncation function for the second-
moment approximation of the tight-binding (TB-SMA) interatomic potential
and illustrate in detail the procedure of constructing the potentials for binary and
ternary transition metal systems. For the ternary Ni–Hf–Ti system, the lattice
constants, cohesion energies, elastic constants and bulk moduli of six binary
compounds, i.e. L12 Ni3Hf, NiHf3, Ni3Ti, NiTi3, Hf3Ti and HfTi3, are firstly
acquired by ab initio calculations and then employed to derive the binomial-
truncated TB-SMA Ni–Hf–Ti potential. Applying the ab initio derived Ni–Hf–
Ti potential, the lattice constants, cohesive energy, elastic constants and bulk
moduli of another six binary compounds, i.e. D03 NiHf3, NiTi3 HfTi3, and B2
NiHf, NiTi, HfTi, and two ternary compounds, i.e. C1b NiHfTi, L21 Ni2HfTi,
are calculated, respectively. It is found that, for the eight binary compounds
studied, the calculated lattice constants and cohesion energies are in excellent
agreement with those directly acquired from ab initio calculations and that
the elastic constants and bulk moduli calculated from the potential are also
qualitatively consistent with the results from ab initio calculations.

1. Introduction

The physical properties of matter can be observed experimentally or determined, and they
can also be theoretically calculated or predicted. Without any doubt, theoretical calculations
based on quantum mechanics, i.e., first-principles calculations, give the most accurate results
compared with other theoretical methods. Nonetheless, first-principles calculations are
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currently limited to studying matter systems consisting of only a few tens of atoms, because
such calculations require a great computation effort to solve the Schrödinger equation. In
comparison, calculations based on empirical interatomic potentials, which have less accuracy
and no sound physical supporting arguments, can handle matter systems involving a great
number of atoms and they allow us to study their static and dynamics properties. Great effort
has therefore been made to develop relevant empirical potentials and, so far, several models
have been proposed for systems of differing characteristics to study various issues [1, 2]. In
particular, for metal systems, based on the concept of local electron density, significant progress
was made during the 1980s by developing the many-body potential [3–5]. From then on,
a number of many-body potentials have been proposed, such as the embedded-atom method
(EAM) [3], modified embedded-atom method (MEAM) [6], Finnis–Sinclair (FS) potential [7],
the second-moment approximation of tight binding potential (TB-SMA) [8], and so on. In
addition to having different physical interpretations, these many-body potentials differ in the
way that the functions are determined. In some cases, the researchers derive the functions and
parameters by fitting the data to those acquired from ab initio calculations, while in many cases
the researchers could make a guess of the functions and fit the parameters to available and
reliable experiment data. For the details of the interaction potentials, one can refer for instance
to the excellent review paper given by Vitek [9].

It is known that, for a currently used many-body potential, it can be divided into a repulsive
component, i.e. a pair term, and an attractive component, i.e. a density or many-body term.
The repulsive component dominates at short distance and models the repulsion between the
atoms when they are brought very close to each other. The attractive component dominates at
large distance and gives the cohesion to the system. Both repulsive and attractive components
decrease quickly and eventually go nearly to zero. In practical application, a cutoff radius
rC is frequently established, and when the distance is greater than rC, the interaction between
atoms is disregarded, since the vales of repulsive and attractive components as well as the
potential at the cutoff radius rC are very small. Such a treatment results in greatly simplifying
the programming as well as saving computer resources. Unfortunately, the treatment creates
a problem, i.e. whenever an atom pair ‘crosses’ the cutoff radius, the energy makes a little
jump. A large number of these events can spoil the energy conservation or lead to non-physical
behaviour in the simulations [10]. Accordingly, the truncation-shift method was developed, and
in this method, the potential was truncated at the cutoff radius rC and the whole potential was
shifted such a value to let the potential equal zero at the cutoff radius [10]. In this case, there is
no discontinuity of the interatomic potential. For the truncation-shift method, the interatomic
forces are always finite, whereas the first derivative of the force is still discontinuous at the
cutoff radius. In order to remove this discontinuity, a smooth transitional function, i.e. the
truncation function, is conceived [11, 12]. By incorporating an appropriate truncation function,
the energy, pressure, force and even the first derivatives of force can go continuously to zero at
the cutoff radius. For instance, Stoddard and Ford constructed a quite complicated truncation
function for the Lennard-Jones potential [11]. Concerning the truncation function of the EAM
potential, Guellil and Adams have also proposed a polynomial equation consisting of four
parameters [13]. Despite the TB-SMA potential having been used widely in computations and
simulations, there is no corresponding applicable truncation function reported in the literature.
We therefore attempt, in the present study, to develop a truncation function for the TB-SMA
potential.

Furthermore, though there are many yet somewhat untidy reports concerning the method
and procedure of the potential fitting, most of them involve pure elements. For example, Baskes
has developed the EAM potentials for the fcc metals [14] and Adams has done so for the bcc
metals [13]. Igarashi et al have parameterized the FS potentials for the hcp metals [15]. Mishin
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and Farkas have employed a ‘two-step’ method to construct a reliable interatomic potential
for the metals Al and Ni [16]. Youhong et al have derived an EAM potential for bcc Ta, by
fitting the elastic constants, lattice constants, cohesion energy, unrelaxed vacancy formation
energy, etc [17]. Nevertheless, in the present authors’ view, there are many technical details
which should be clarified concerning the construction of an interatomic potential for binary
or ternary metal systems, capable of describing the interaction between the different types of
atom. We therefore intend, in the present study, to illustrate, taking the Ni–Hf–Ti system as a
representative one, how to construct an interatomic potential for a ternary metal system.

In addition, since it is a frequently used shape memory alloy system, the structure and
formation of the Ti–Hf–Ni alloy have been extensively studied in recent years [18, 19].
For example, by extended x-ray absorption fine structure measurements, Sadoc et al have
investigated the local structure of the Ni–Hf–Ti amorphous alloys and found a new icosahedral
ordering around the nickel atoms [20, 21]. Nevertheless, the detailed structural phase transition
and microstructure of the Ni–Hf–Ti alloys are still in need of further studies, especially at an
atomic scale. In order to perform an atomistic calculation and simulation, a realistic interatomic
potential is required. To develop an interatomic potential of the Ni–Hf–Ti system, based on the
TB-SMA scheme, is therefore the major objective of the present study.

2. Binomial-truncated TB-SMA interatomic potential

According to the TB-SMA scheme [8, 22], the energy of the d band is proportional to the square
root of the second moment of the density of states. The latter is expressed in terms of a sum
of the squares of the hopping/transfer integrals and accordingly the total potential energy of an
atom i can be written as

Ei =
∑

j �=i

φ(ri j ) −
√∑

j

f 2(ri j ) (1)

where φ(ri j ) is the repulsive interaction, i.e. pair terms, and the f (ri j ) are the hopping integrals
between atoms i and j separated by the distance ri j . In the original TB-SMA scheme proposed
by Rosato, Guillope and Legrand, the φ(ri j ) and f (ri j ) are taken to be exponential forms:

φ(ri j ) = A exp

[
−p

(
ri j

r0
− 1

)]

f (ri j ) = ξ 2 exp

[
−2q

(
ri j

r0
− 1

)] (2)

where r0 is the first-neighbour distance. p, q, A and ξ are four adjustable parameters
i.e. potential parameters. From the physical point of view, ξ is an affective hopping integral and
q describes the distance dependence of the hopping integral. The summations in equation (1)
are restricted to the first neighbours in the study of Rosato [8], while the summations are
calculated up to a cutoff radius rC by Willaime [22]. Clearly, such treatment is too crude and
therefore we propose a truncation function for the TB-SMA potential. Furthermore, for the sake
of concise expression and convenient application, we also reformulate the SMA potential in an
empirical way. The expression of the TB-SMA potential incorporating a truncation function
can be written as follows:

Ei (x) =
∑

j �=i

φ(ri j x) + F(ρi ) (3)

with

F(ρ) = −√
ρ (4)
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ρi (x) =
∑

j

ψ(ri j x) (5)

and

φ(ri j x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A1 exp

[
−p

(
ri j x

r0
− 1

)]
, ri j x � rcm1

A2

(
rc1

r0
− ri j x

r0

)3(
1 − s

ri j x

r0

)
, rcm1 < ri j x � rc1

0, rc1 < ri j x

(6)

ψ(ri j x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B1 exp

[
−p

(
ri j x

r0
− 1

)]
, ri j x � rcm2

B2

(
rc2

r0
− ri j x

r0

)5(
1 − t

ri j x

r0

)
, rcm2 < ri j x � rc2

0, rc2 < ri j x

(7)

where x is a scale variable. x < 1 and x > 1 indicate that the system is isotropically
compressed and expanded, respectively, while x = 1 indicates that the system is in the
equilibrium state. E(x) is the total potential energy and ri j is the distance between atoms i and
j of the system at the equilibrium state. In the case of not being far away from the equilibrium
state, i.e. no phase transition when the pressure varies, the scale variable x can be given as

x =
(

V

V0

) 1
3

= R

R0
= a

a0
. (8)

Here V, R and a stand for the system (also atomistic) volume, the nearest-neighbour distance
and lattice constant, respectively. The subscripts 0 stand for the corresponding values of the
system at equilibrium. For the sake of convenience and without considering the particular
physical argument, φ and ψ are called here the pair term and density term, respectively.
rcm1 and rcm2 are the knots of the pair and density terms, respectively. Since the pair term
(dominating at a short distance) going to zero more quickly and earlier than the density term
(dominating at a large distance), two different cutoff radii, i.e. rc1 and rc2, are designed
for the pair and density terms, respectively, leading to an improvement in the computation
efficiency. The cutoff radii and transition points, rc1, rcm1 for φ and rc2, rcm2 for ψ , can
be regarded as adjustable parameters in most cases. In contrast to the original TB-SMA,
here r0 is an ordinary potential parameter, often yet not necessarily equating to the nearest-
neighbour distance. A1, p, A2, s and B1, q, B2, t are another eight potential parameters. The
13 parameters of the proposed potential, i.e. A1, p, A2, s, rcm1, r1, B1, q , B2, t , rcm2 and rc2,
can be denoted, in terms of a set, as {A1, . . .}. Considering the forms of truncation functions
given above, we would like to call the realistic potential expressed by equations (3)–(7) the
binomial-truncated TB-SMA interatomic potential.

In the following, we would like to give a detailed discussion of the truncation functions.
From the form of the truncation functions expressed in equations (6) and (7), one can clearly
see that pair and density terms as well as their high derivatives can continuously and smoothly
go to zero at the cutoff radii r1 and r2, respectively, thus removing the ‘jumps’ of total energy,
pressure and force when an atom pair ‘crosses’ the cutoff radii. In order to totally avoid the
discontinuity of energy, pressure and force in the whole calculated range, φ and ψ should be
smooth, and their first derivative should be continuous at the transitional points. From these
conditions, the parameters A2, s and B2, t can be determined. Figure 1 shows the curves of
φ and ψ that are derived from the potential of Ni, which obviously shows that both φ and
ψ are certainly continuous and smooth in whole calculated range. It should be noted that,
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Figure 1. The curves of φ (a) and ψ (b) derived for the potential parameters of Ni.

for the proposed potential, φ is allowed to be negative in a particular range in some cases,
as figure 1 shows, much differing from the original TB-SMA, in which φ and ψ are always
positive. As a matter of fact, this situation does not cause any serious results in the simulation.
Similarly, ψ may also be negative sometimes in a particular range, e.g. when x much larger
than 1. This may lead to a catastrophic result in the case when the nearest interatomic distance
is much larger than the equilibrium value. Fortunately, such a case can hardly take place in the
condensed state, and therefore the binomial-truncated TB-SMA interatomic potential can be
safely applied to computations and simulations in materials science as well as condensed mater
physics. Of course, one can apply some complexity constraints in the fitting procedure so as
to get positive φ and ψ in the whole calculated range. Nevertheless those constraints would
be of not much significance except for deteriorating the performance of the potential. Besides,
compared with other truncation functions, such as f (x) = Ax3 + Bx2 + Cx + D proposed
by Guellil and Adams for the EAM potential, one can find that there are only two parameters
for the binomial truncation function, which can significantly simplify the fitting procedure and
computation.

3. Construction the interatomic potential of the Ni–Hf–Ti system

In this section, we demonstrate in detail the method to construct the interatomic potential of
the Ni–Hf–Ti system. In contrast to the case of a pure metal, e.g. Ni, in which there is only
one set of parameters, i.e. {A1, . . .}Ni, for the binary Ni–Hf system, there are three sets of
parameters needed, i.e. {A1, . . .}Ni, {A1, . . .}Hf and {A1, . . .}Ni−Hf, to respectively describe the
interaction between Ni–Ni, Hf–Hf and Ni–Hf atoms. Here {A1, . . .}Ni−Hf is often called the
cross potential, which describes the interaction between atoms of different type. Accordingly,
for the ternary Ni–Hf–Ti system, there should be six sets of parameters, and three of them are
cross potentials {A1, . . .}Ni−Hf, {A1, . . .}Ni−Ti and {A1, . . .}Hf−Ti. Generally, when fitting the
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cross potential, some properties of compounds such as the cohesion energy, lattice constants,
bulk modulus and elastic constants are calculated from the potential, and then compared with
the experimental results; thus the proper parameters are determined. In calculating, these
properties of a compound can be obtained by averaging the corresponding quantities of all
atoms in a unit cell.

First of all, it is necessary to give the formula to calculate the potential energy of a
compound. Consider a unit cell consisting of NNi Ni atoms and NHf Hf atoms; the total potential
energy Ecell(x) can be calculated by

Ecell(x) =
NNi∑

i

ENi,i (x) +
NHf∑

k

EHf,k(x) (9)

where ENi,i (x) and EHf,k(x) are the potential energy of a Ni atom and a Hf atom, respectively.
x is the scale variable, which can be written as

x = RNi−Hf

RNi−Hf,0
= RNi

RNi,0
= RHf

RHf,0
. (10)

The meanings of those symbols are equivalent to those of equation (8). In the same way, the
potential energy of the Ni atom i can be calculated by

ENi,i (x) =
∑

j �=i

φNi,i (ri j , x) + F(ρNi,i ). (11)

It is a reasonable approximation that both pair and density terms obey the rule of linear
combination. Consequently, for the Ni atom i , the summations of the pair and density terms
can be respectively calculated by

∑

j �=i

φNi,i (ri j , x) =
∑

j1 �=i

φNi−Ni,i (ri j1
, x) +

∑

j2 �=i

φNi−Hf,i (ri j2
, x) (12)

ρNi,i (x) =
∑

j �=i

ψNi,i (ri j , x) =
∑

j1 �=i

ψNi−Ni,i (ri j1
, x) +

∑

j2 �=i

ψNi−Hf,i (ri j2
, x) (13)

where φNi−Ni,i , ψNi−Ni,i denote the contributions from Ni atoms, which are determined by the
parameters {A1, . . .}Ni, while φNi−Hf,i , ψNi−Hf,i denote the contributions from Hf atoms, which
are determined by the cross potential {A1, . . .}Ni−Hf. Similarly, the corresponding formulae to
calculate the potential energy of a Hf atom can be obtained by substituting the subscript Hf for
Ni and Ni for Hf, respectively, in equations (11) and (12).

For a compound, no matter whether it is stable or metastable, when it is in equilibrium, its
first derivative of potential energy should equate to zero, i.e.

d

dx
Ecell(x)

∣∣∣∣
x=1

= 0. (14)

Equation (14) is often called the equilibrium condition; from it the equilibrium point
can be determined. Alternatively, the equilibrium point can also be determined from

d
dRNi−Hf

Ecell(x)|RNi−Hf=RNi−Hf,0 = 0, as is often done in the literature. However, considering
that some treatments in the literature are vague, equivocal or even incorrect, it is necessary
to explicitly point out that the four relations below always hold. One should bear in mind
these relations, especially when calculating the derivates of potential energy with respect to
RNi−Hf of a compound. As a matter of fact, these relations can be immediately obtained from
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equation (10).

d

dRNi−Hf
φNi−Ni(ri j , x) = RNi,0

RNi−Hf,0

d

dRNi
φNi−Ni(ri j , x)

d

dRNi−Hf
ψNi−Ni(ri j , x) = RNi,0

RNi−Hf,0

d

dRNi
ψNi−Ni(ri j , x)

d

dRNi−Hf
φHf−Hf(ri j , x) = RHf,0

RNi−Hf,0

d

dRHf
φHf−Hf(ri j , x)

d

dRNi−Hf
ψHf−Hf(ri j , x) = RHf,0

RNi−Hf,0

d

dRHf
ψHf−Hf(ri j , x).

(15)

Besides, when a compound is in equilibrium, the stress of each unit cell should equate to zero,
i.e.

σcell,αβ(x)|x=1 = 0. (16)

Similarly, equation (16) is another equilibrium condition. The stress of the unit cell, σcell,αβ(x),
can be calculated by

σcell,αβ(x) = 1

	(x)

∑
	i (x)σi,αβ(x) (17)

where 	(x) is the volume of the unit cell. 	i (x) and σi,αβ(x) are the volume and stress of atom
i , respectively. The stress of atom i can be calculated by

σi,αβ(x) = 1

	i (x)

∂ Ei (x)

∂εαβ

= 1

	i (x)
[Ai,αβ(x) + F ′(ρi )Vi,αβ(x)]. (18)

In equation (18), F ′(ρi ) = dF(ρi )

dρi
. Ai,αβ(x) and Vi,αβ(x) are given respectively by

Ai,αβ(x) =
∑ dφ(ri j , x)

d(ri j x)

(rα
i j x)(rβ

i j x)

ri j x

Vi,αβ(x) =
∑ dψ(ri j , x)

d(ri j x)

(rα
i j x)(rβ

i j x)

ri j x
,

(19)

where rα
i j and rβ

i j are Cartesian components of vector ri j . The stress of the cell can thus be
calculated from equation (17), once the stress of each atom is obtained from equations (18)
and (19). Furthermore, from the equilibrium conditions, i.e. equations (14) and (16), the lattice
constants of a compound can be determined.

In addition, the elastic constant plays an important role in fitting potential parameters,
because it reflects more characteristics of the interaction than the cohesion energy and lattice
constant do. It is necessary to deduct the calculating formulae so as to obtain the elastic constant
from interatomic potential. In the same way as computing the stress, the elastic constants of a
compound can be obtained by

Ccell,αβuv(x) = 1

	(x)

∑
	i (x)Ci,αβuv(x) (20)

where Ci,αβuv(x) is the elastic constant of atom i , which can be calculated from

Ci,αβuv(x) = 1

	i (x)
[Bi,αβuv(x) + F ′(ρi )Wi,αβuv(x) + F ′′(ρi )Vi,αβ(x)Vi,uv(x)]

+ δαvσi,βv(x) + δβvσi,αv(x). (21)
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Table 1. The parameters of binomial-truncated TB-SMA interatomic potential of the Ni–Hf–Ti
ternary system. A1 and A2 are expressed in eV, B1 and B2 in eV2, rc1m, rc1, rc2m, and rc2 in Å.

Ni Hf Ti Ni–Hf Ni–Ti Hf–Ti

A1 0.1095 0.1371 0.1666 0.0437 0.1299 0.2161
p 13.8078 14.7779 11.6459 14.3745 10.8702 14.0212
A2 0.0110 0.0028 0.0234 0.0036 0.5086 0.0203
s 0.6145 0.5596 0.6070 0.6175 0.7781 0.6155
rc1m 3.7412 5.2677 4.4861 4.2049 3.0550 4.6608
rc1 4.9963 6.4453 6.3324 5.6065 5.1564 6.2144
B1 1.3137 2.0818 1.9355 1.9812 2.3395 2.7308
q 2.3764 1.5169 3.1195 2.7735 3.8971 6.4792
B2 2.0521 3.3629 0.4869 92.2265 38.9756 −0.1838
t 0.5783 0.6848 0.4540 0.6205 0.6305 0.5087
rc2m 4.9883 5.6335 7.4768 4.9057 4.6751 6.9912
rc2 7.0432 8.8622 9.7841 6.3074 6.0109 8.5448
r0 2.4941 3.2226 2.9907 2.8033 2.6715 3.1072

In equation (21), F ′′(ρi ) = d2 F(ρi )

dρ2
i

. Bi,αβuv(x) and Wi,αβuv(x) respectively stand for

Bi,αβuv(x) =
∑[

d2φ(ri j , x)

d(ri j x)2
− 1

ri j x

dφ(ri j , x)

d(ri j x)

]
(rα

i j x)(rβ

i j x)(ru
i j x)(rv

i j x)

(ri j x)2

Wi,αβuv(x) =
∑[

d2ψ(ri j , x)

d(ri j x)2
− 1

ri j x

dψ(ri j , x)

d(ri j x)

]
(rα

i j x)(rβ

i j x)(ru
i j x)(rv

i j x)

(ri j x)2
.

(22)

Vi,αβ(x), Vi,uv(x), Ai,βv(x) and Ai,αv(x) can be computed by equation (19). The elastic
constants of a compound can thus be calculated from equation (20), once the elastic constants
of each atom are obtained from equations (21) and (22). One should note that the formulae
deduced above can also be applied to a pure metal system. In contrast to the case of the cross
potential, however, the formation energy of a vacancy is frequently considered in deriving
the potential for pure metals. In addition, in order to evaluate the relevance of interatomic
potentials, thermodynamic properties such as the melting point and phonon spectrum are
frequently calculated from the derived potential and then compared with the experiments.

It should be pointed out that the scale variable x is incorporated into the potential
equations (3)–(7) as well as the formulae deduced above, thus not only making it
straightforward to compute the potential energy derivative, especially of a compound, but
also giving an immediate way to calculate the properties of system at a non-equilibrium state.
Moreover, the correlation between properties of a compound and volume (also pressure) can be
obtained easily from these formulae. Since the physical properties used in fitting the potential
parameters are the values of a system at the equilibrium state, one can set the scale variable x
to be 1 in fitting process. In fact, once the potential parameters are figured out, one can also let
the scale variable x always be 1 without regard to the actual value of V . The main reason for
incorporating the scale variable x shown above is to simplify the deduction process.

4. Results and discussion

4.1. The binomial-truncated TB-SMA interatomic potential of pure Ni, Hf and Ti

Now we present the fitting result of the binomial-truncated TB-SMA interatomic potential
of Ni–Hf–Ti system. For the sake of conciseness, table 1 displays the all parameters of the
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Figure 2. Potential energy and atomistic volume sequence of stable and metastable structures of
Ni, Hf and Ti identified from the constructed potentials.

Table 2. The fitted and experimental properties [23, 24] of Ni, Hf and Ti. Lattice constants a and
c are expressed in Å, the cohesion energies Ec in eV, and elastic constants Ci j in Mbar.

fcc-Ni hcp-Hf hcp-Ti

Fitted Exp. Fitted Exp. Fitted Exp.

a 3.527 3.523 3.267 3.190 3.003 2.950
c 5.226 5.050 4.874 4.680
Ec 4.5176 4.4564 6.4924 6.4400 4.8128 4.8496
C11 2.296 2.480 1.903 1.881 1.689 1.624
C12 1.550 1.550 0.712 0.772 0.703 0.920
C13 0.602 0.660 0.585 0.690
C33 2.264 1.969 1.942 1.807
C44 1.291 1.240 0.475 0.557 0.375 0.467

ternary system that are fitted using the method described in section 4. Table 2 gives the fitted
and experimental lattice constants, cohesion energies, elastic constants of fcc Ni, hcp Hf and
Ti, from which one can clear see that the fitted properties match well with the experimental
properties [23, 24]. It should be noted that the first derivative of energy and the remnant stress
are all very small, less than 10−10 Mbar, indicating that the fitted structures of these metals
are very close to the equilibrium points. One important approach to evaluate the relevance
of interaction potential is to calculate the energies of metastable structures from the potential
and then to check the energy sequence of stable and metastable structures. In contrast to the
previous works, in which a constant-volume assumption is often employed, i.e. assuming the
atomic volumes of hcp, fcc and bcc structures at equilibrium state equate to each other [25, 26],
the hcp and bcc structures are first optimized using the constructed potential in the present study
and then the potential energies and lattice constants of the metastable structures at equilibrium
are calculated. Figure 2 shows the potential energy and atomistic volume sequence of stable
and metastable structures of Ni, Hf and Ti identified from the constructed potentials (see
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Figure 3. The EOSs of fcc-Ni, hcp-Hf and Ti derived from the binomial-truncated TB-SMA
interatomic potential.

table 3). First, one can see from figure 2 that the stable order of stability and metastable
structures identified by potential is consistent with the experimental observation. For instance,
the potential energy of fcc Ni is −4.518 eV/atom, lower than −4.488 and −4.465 eV/atom,
the potential energy of hcp and bcc Ni, indicating that fcc Ni is most stable among the three
structures. Similarly, it can been seen that the hcp Hf and hcp Ti are most stable among
the hcp, fcc and bcc structures. Table 2 shows the lattice constants and formation energies
of Ni, Hf and Ti metastable structures that are determined by the interatomic potential and
by ab initio calculations [27]. Clearly, the results obtained from the binomial-truncated TB-
SMA interatomic potential qualitatively match with the ab initio calculations. Second, both
the potential and ab initio calculations indicate that the atomistic volume may vary slightly
from structure to structure. For example, the volumes of hcp, fcc and bcc Hf at equilibrium are
determined by potential to be 24.153, 24.318 and 24.015 Å

3
/atom respectively. Clearly, the

presumption that the atomistic volumes are constant in different structures is incorrect, since
it brings some errors in determining the energy sequence of stable and metastable structures.
This is why the lattice constants are allowed to vary in optimizing the metastable structures in
present study.

Another approach to evaluate the relevance of the constructed potential is to check whether
the potentials can describe the interatomic interaction of a system at non-equilibrium, i.e. to
derive the equation of state (EOS) from the potential and then compare it with other EOSs that
are obtained from theory or from experiment. The frequently used EOS in this field is the Rose
equation [28] and its variant [29], which has been considered to be universal for all categories
of solids. The EOSs, i.e. the potential energies as functions of the nearest-neighbour distance of
fcc Ni, Hcp Hf and Ti, are therefore derived from the binomial-truncated TB-SMA interatomic
potential and shown in figure 3 together with the Rose equation of hcp Hf. From figure 3, one
sees that, for the potential energy, there is not any discontinuity in whole calculated range. In
particular, at the cutoff radius, the potential energy and derivatives continuously go to zero as
expected. Furthermore, one can find from figure 3 that, in the vicinity of the equilibrium point,
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Table 3. The lattice constants and formation energies of Ni, Hf and Ti metastable structures that are
determined by the interatomic potential (first line) and by ab initio calculations (second line) [27].
The lattice constants and formation energies are expressed in Å and Mbar, respectively.

hcp-Ni bcc-Ni fcc-Hf bcc-Hf fcc-Ti bcc-Ti

a 2.553 2.825 4.599 3.635 4.236 3.279
2.483 2.799 4.471 3.538 4.099 3.241

c/a 1.536
1.647

Ef 0.029 0.053 0.015 0.048 0.002 0.039
0.022 0.094 0.071 0.176 0.057 0.107

Table 4. The properties of L12 Ni–Hf, Ni–Ti and Hf–Ti compounds that are fitted and those that are
acquired from ab initio calculation. Lattice constants a are expressed in Å, the cohesion energies
Ec in eV, and the elastic constants Ci j and bulk modulus B0 in Mbar.

a Ec C11 C12 C44 B0

L12 Ni3Hf 3.788 5.473 2.637 1.406 0.953 1.320
3.588 5.473 2.156 1.514 1.237 1.728

L12 NiHf3 4.274 5.933 1.310 0.996 0 1.101
4.340 5.730 1.483 0.989 0.787 1.154

L12 Ni3Ti 3.625 5.005 2.571 1.501 1.107 1.858
3.553 5.004 2.340 1.513 1.155 1.788

L12 NiTi3 3.937 4.842 1.373 1.237 0 1.282
4.003 4.757 1.646 1.097 0.791 1.280

L12 Hf3Ti 4.410 5.965 0.873 1.322 0.722 1.173
4.472 5.755 1.696 1.130 0.849 1.318

L12 HfTi3 4.216 5.172 0.801 1.210 0.574 1.074
4.317 4.964 1.953 1.227 0.858 1.469

the EOS derived from the proposed potential is very close to the Rose equation, indicating
that the interatomic potential constructed in the present study can be applied to describe the
interatomic interaction of a system not very far away from the equilibrium state. Nevertheless,
from the comparison between the derives EOS and the Rose equation, one can find that the
cutoff distance is somewhat overlong. Figure 3 implies that the appropriate cutoff radii should
be about 2R0, i.e. two time of distance of the nearest neighbour, instead of 3R0 in present study.

4.2. The cross potential of Ni–Hf, Ni–Ti and Hf–Ti

The lattice constants, cohesion energies, elastic constants and bulk moduli of L12 Ni3Hf and
NiHf3 are used in fitting the cross potential of Ni–Hf. The properties of the two compounds are
acquired by ab initio calculation using CASTEP [30]. In the ab initio calculation, the norm-
conserving, non-local ultra-soft pseudo-potentials for Ni and Hf have been used, together with
a kinetic energy cutoff of 350 eV on an 11×11×11 k-point mesh in the first Brillouin zone and
the PW91 GGA exchange–correlation functional [31]. Geometry optimizing is first performed
to determine the lattice constants and total energies of the compounds at equilibrium, and then
the elastic constants are calculated; meanwhile, the bulk moduli are obtained. The cohesion
energies of compounds can be easily derived from the total energies obtained by the ab initio
calculation. Similarly, the properties of L12 Ni3Ti, NiTi3 and L12 Hf3Ti HfTi3 are acquired and
used in fitting the cross potential of Ni–Ti and Hf–Ti, respectively. Using the properties and the
scheme described in section 4, the cross potential parameters of Ni–Hf, Ni–Ti and Hf–Ti can
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Figure 4. The EOSs of L12 Ni3Hf, Ni3Ti and Hf3Ti compounds that are derived from the binomial-
truncated TB-SMA interatomic potential. The potential energies are expressed by eV/atom.

be determined by fitting; these have been given in table 1. Table 4 lists the comparisons of the
properties of L12 Ni–Hf, Ni–Ti and Hf–Ti compounds [32] that are fitted and acquired from ab
initio calculation. It should be noted that the first derivative of energy and the remnant stress
are all very small, less than 10−10 Mbar, indicating that the fitted structures of these metals
are very close to the equilibrium points. One can see from table 4 that, except for the C11 of
L12 Hf3Ti and HfTi3, the properties of the six compounds determined from potentials are fairly
consistent with the ab initio calculation results. In particular, the lattice constants and cohesion
energies obtained by both methods match each other quite well. Figure 4 plots the potential
energies as functions of the nearest-neighbour distance; it shows that the potential energies of
those compounds are also continuous and smooth in the whole range. Consequentially, for pure
metals and their compounds, there are not any ‘jumps’ or discontinuities in energy as well as
the pressure and force calculated from the binomial-truncated TB-SMA potential which avoid
unphysical behaviour in simulations.

4.3. Properties of binary and ternary compounds calculated from interatomic potentials

It is interesting to derive, from the constructed potential, the properties of other compounds not
involved in the fitting procedure, and to compare them with the results of ab initio calculations.
A total of six binary compounds, i.e. D03 NiHf3, NiTi3 HfTi3 and B2 NiHf, NiTi, HfTi, as well
as two ternary compounds, i.e. C1b NiHfTi and L21 Ni2HfTi, are considered in present study.
To determine the crystal structures of those compounds at equilibrium, geometry optimizations
are conducted for the eight compounds using interatomic potential and ab initio calculations,
respectively. And then their properties are calculated, also using the potential and ab initio
calculations. Tables 4 and 5 displays the results of the two calculating methods. For the eight
compounds, one can see from table 4 that there are remarkable discrepancies in the elastic
constants acquired by the two methods, which may mainly result from three factors. The first
one comes from the ab initio calculation. Our experiences show that the maximum errors of
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Table 5. The properties of Ni–Hf, Ni–Ti and Hf–Ti compounds that are acquired from interatomic
potential and ab-initio calculations. Lattice constants a are expressed in Å, the cohesion energies
Ec in eV, and the elastic constants Ci j and bulk modulus B0 in Mbar.

a Ec C11 C12 C44 B0

D03 NiHf3 6.739 5.821 1.237 1.225 0.377 1.229
7.015 5.685 1.030 1.085 0.949 1.067

D03 NiTi3 6.211 4.837 1.477 1.087 0.402 1.217
6.739 4.358 1.328 1.571 1.125 1.490

D03 HfTi3 6.665 5.108 0.973 0.435 1.125 1.064
6.970 4.709 1.500 1.790 1.267 1.694

B2 NiHf 3.207 5.841 2.495 1.355 0.523 1.735
3.023 5.983 5.399 1.216 0.884 2.610

B2 NiTi 3.016 5.059 1.509 1.616 0.439 1.580
2.976 4.951 3.780 1.137 0.575 2.018

B2 HfTi 3.407 5.515 0.845 1.196 0.430 1.082
3.505 5.201 1.572 1.595 1.159 1.586

C1b NiHfTi 6.089 5.262 1.531 0.947 0.000 1.141
6.590 4.223 0.642 0.969 0.732 0.860

L21 Ni2HfTi 6.256 5.442 1.822 1.205 0.501 1.411
5.973 5.419 4.753 1.414 0.943 2.527

elastic constants determined by ab initio calculation may be as large as ten per cent or even
thirty per cent in some case. These errors may also bring some uncertainties in the fitting
potential. The second one rests with the parameters of potential. If more time and effort are
paid to the fitting procedure, the performance of the constructed potential may be improved.
The third one is the intrinsic shortcoming of the interatomic potential, since it belongs to an
empirical method. Therefore, no matter how we improve the quality of the potential, these
discrepancies cannot be reduced to a considerably low level. However, it should be noted
that the lattice constants as well as cohesion energies of the eight compounds acquired by
interatomic potential are quite consistent with the results of ab initio calculations. The average
error is less than 5% and maximum error less than 10%, except for the lattice constant of C1b

NiHfTi. It thus can be concluded that the interatomic potential can be reliably applied to issues
related to the structure as well as energy, and that there exists considerable error in calculating
the properties of compounds with interatomic potentials.

5. Summary

We propose, in this paper, a two-parameter binomial truncation function for the tight-binding
interatomic potential and illustrate, in detail, the procedure of construction of the potentials
for binary and ternary transition metal systems. For the Ni–Hf–Ti ternary system, the lattice
constants, cohesion energies, elastic constants and bulk moduli of six binary compounds,
i.e. L12Ni3Hf, NiHf3, Ni3Ti, NiTi3, Hf3Ti and HfTi3, are first acquired by ab initio calculations
and then employed in fitting the binomial-truncated TB-SMA Ni–Hf–Ti potential. Applying
the ab initio derived Ni–Hf–Ti potential, the lattice constants, cohesive energy, elastic constants
and bulk moduli of another six binary compounds, i.e. D03 NiHf3, NiTi3 HfTi3, and B2 NiHf,
NiTi, HfTi, and, moreover, two ternary compounds, i.e. C1b NiHfTi and L21 Ni2HfTi, are
calculated, respectively. It is found that for the total of eight studied compounds, the calculated
lattice constants and cohesion energies are in excellent agreement, and that the calculated
elastic constants and bulk moduli are also qualitatively consistent with the results from ab
initio calculations.
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